Abstract

The high-pressure solubility in silicate liquids of moderately siderophile 'iron-loving' elements (such as nickel and cobalt) has been used to suggest that, in the early Earth, an equilibrium between core-forming metals and the silicate mantle was established at the bottom of a magma ocean. But observed concentrations of the highly siderophile elements--such as the platinum-group elements platinum, palladium, rhenium, iridium, ruthenium and osmium--in the Earth's upper mantle can be explained by such a model only if their metal-silicate partition coefficients at high pressure are orders of magnitude lower than those determined experimentally at one atmosphere (refs 3-8). Here we present an experimental determination of the solubility of palladium and platinum in silicate melts as a function of pressure to 16 GPa (corresponding to about 500 km depth in the Earth). We find that both the palladium and platinum metal-silicate partition coefficients, derived from solubility, do not decrease with pressure--that is, palladium and platinum retain a strong preference for the metal phase even at high pressures. Consequently the observed abundances of palladium and platinum in the upper mantle seem to be best explained by a 'late veneer' addition of chondritic material to the upper mantle following the cessation of core formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.