Abstract

A K+ channel was incorporated into voltage-clamped planar lipid bilayers from bovine chromaffin granules and resealed granule membranes ("ghosts"). It was not incorporated from plasma membrane-rich fractions from the adrenal medulla. The channel had a conductance of approximately 400 pS in symmetric 450 mM KCl, with the permeability sequence K+ > Rb+ > Cs+ > Na+ > Li+, and was insensitive to both Ca2+ and charybdotoxin. It exhibited complex gating kinetics, consistent with the presence of multiple open and closed states, and its gating was voltage-dependent. The channels appeared to incorporate into bilayers with the same orientation, and were blocked from one side (the side of vesicle addition) by 0.2-1 mM TEA+. The block was slightly voltage-dependent. Acidification of resealed granule membranes in response to external ATP (which activated the vacuolar-type ATPase) was significantly reduced in the presence of 1 mM intralumenal TEACl (with 9 mM KCl), and parallel measurements with the potential-sensitive dye Oxonol V showed that such vesicles tended to develop higher internal-positive membrane potentials than control vesicles containing only 10 mM KCl. 1 mM TEA+ had no effect on proton-pumping activity when applied externally, and did not directly affect either the proton-pumping or ATP hydrolytic activity of the partially-purified ATPase. These results suggest that chromaffin granule membranes contain a TEA(+)-sensitive K+ channel which may have a role in regulating the vesicle membrane potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.