Abstract

The eastern migratory population of monarch butterflies has experienced a multi-decadal decline, but a recent increase in abundance (to 6.05 ha in winter 2018) has led some observers to question whether the population has reversed its long-standing decline and embarked on a trajectory of increasing abundance. We examined this possibility through changepoint analyses, assessing whether a change in trajectory existed. We found evidence of a change in trajectory in 2014, but insufficient statistical support for a significantly increasing population since that time (β = 0.285, 95% CI = -0.127, 0.697). If the population estimate for winter 2019 is ≥4.0 ha, we will then be able to credibly assert the population has been increasing since 2014. However, given estimated levels of time series variability, presumed habitat capacity and no recent change in status or trend, there was a 13.5% probability of observing a population estimate as large or larger than was reported for winter 2018. Our analyses highlight the incredible difficulty in drawing robust conclusions from annual changes in abundance over a short time series, especially for an insect that commonly exhibits considerable year-to-year variation. Thus, we urge caution when drawing conclusions regarding species status and trends for any species for which limited data are available.

Highlights

  • Populations vary over time in their abundance, and this variability can impart uncertainty to the status and trend of a species

  • In addition to the stochastic variation in abundance imposed by the environment, uncertainty in species status and trend arises from population sizes most often being estimated rather than counted; trends being inferred from limited duration time series; and latent characteristics of a population, such as its relation to carrying capacity or quasi-extinction thresholds, generally being inferred properties rather than an observable quantity

  • When examining the time series of overwinter abundance of the eastern migratory population of monarch butterflies for a change in mean abundance, we identified a single credible changepoint in winter 2009

Read more

Summary

Introduction

Populations vary over time in their abundance, and this variability can impart uncertainty to the status and trend of a species. In addition to the stochastic variation in abundance imposed by the environment, uncertainty in species status and trend arises from population sizes most often being estimated rather than counted; trends being inferred from limited duration time series; and latent characteristics of a population, such as its relation to carrying capacity or quasi-extinction thresholds, generally being inferred properties rather than an observable quantity. In winter 2018, estimates of monarch abundance in their overwintering areas indicated monarchs increased by 144% over their previous year’s abundance, to an index of population size of 6.05 ha (Conanp and World Wildlife Fund-Mexico, 2019) This estimate has led some observers to question whether the population has grown in recent years to the point at which it is no longer at risk. An alternative possibility could be that the underlying status and trajectory of the population had not changed but instead the species demonstrated the extreme variability in year-to-year abundance that is not uncommon for insects

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.