Abstract

We report pressure-dependent photoluminescence (PL) experiments under hydrostatic pressures up to 2.16 GPa on a mid-wave infrared InAs/InAs0.86Sb0.14 type-II superlattice (T2SL) structure at different pump laser excitation powers and sample temperatures. The pressure coefficient of the T2SL transition was found to be 93 ± 2 meV·GPa−1. The integrated PL intensity increases with pressure up to 1.9 GPa then quenches rapidly indicating a pressure induced level crossing with the conduction band states at ∼2 GPa. Analysis of the PL intensity as a function of excitation power at 0, 0.42, 1.87, and 2.16 GPa shows a clear change in the dominant photo-generated carrier recombination mechanism from radiative to defect related. From these data, evidence for a defect level situated at 0.18 ± 0.01 eV above the conduction band edge of InAs at ambient pressure is presented. This assumes a pressure-dependent energy shift of −11 meV·GPa−1 for the valence band edge and that the defect level is insensitive to pressure, both of which are supported by an Arrhenius activation energy analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.