Abstract
Carbon kinetic isotope effects were determined at natural abundance for the palladium trimethylenemethane cycloaddition of ester−amide 5. Substantial intermolecular 13C KIEs were observed for both olefinic carbons of 5. In contrast, a Michael addition to 5 exhibits a significant 13C KIE only at the carbon β to the ester group. Intramolecular KIEs determined for the product-determining step(s) for reaction of the Pd−TMM intermediate would require a surprising isotope-dependent selection between diastereomeric ring closures. These results cannot be reconciled with a stepwise cycloaddition mechanism but are readily interpreted in terms of a concerted cycloaddition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.