Abstract

The in-plane magnetic penetration depth lambda ab in optimally doped (BiPb)2(SrLa)2CuO6+delta (OP Bi2201) was studied by means of muon-spin rotation. The measurements of lambda ab(-2)(T) are inconsistent with a simple model of a d-wave order parameter and a uniform quasiparticle weight around the Fermi surface. The data are well described assuming the angular gap symmetry obtained in ARPES experiments [Phys. Rev. Lett. 98, 267004 (2007)], which suggest that the superconducting gap in OP Bi2201 exists only in segments of the Fermi surface near the nodes. The remaining parts of the Fermi surface, which are strongly affected by the pseudogap state, do not contribute significantly to the superconducting condensate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.