Abstract
USF and c-Myc are basic helix-loop-helix transcription factors with similar DNA-binding specificities, but antagonistic effects on cellular transformation. In order to determine how these opposite functions correlate with the transcriptional activities of the two factors on particular downstream targets, we investigated the roles of USF and c-Myc in expression of CDK4, a known direct target of c-Myc. Overexpression of either c-Myc or USF2, but not USF1, stimulated the expression of CDK4 promoter-driven reporter genes in the non-tumorigenic mammary epithelial MCF-10A cells. Dominant-negative mutants specific to either Myc or USF family proteins inhibited reporter gene activity as well as endogenous CDK4 expression, demonstrating involvement of both USF and Myc in CDK4 transcriptional control. In contrast, in two different breast cancer cell lines where USF is transcriptionally inactive and c-Myc is overexpressed, CDK4 promoter activity was no longer responsive to either transcription factor. Accordingly, chromatin immunoprecipitation revealed significantly lower levels of both USF and c-Myc bound to the endogenous CDK4 promoter in breast cancer cells than in MCF-10A cells, with a concomitant decrease in associated histone H3 acetylation. These results suggest that a major switch in the transcriptional control of CDK4 occurs during breast carcinogenesis, with likely alteration of cell cycle regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.