Abstract

The promise of targeted therapies in molecularly defined subsets of cancer has led to a transformation of the process of drug development in oncology. To target cancer successfully and precisely requires high-quality translational data. Such data can be generated by the use of biomarkers that answer key questions in drug development. Translational data for aiding in decision-making and driving cancer drug development can be generated by systematic assessments with biomarkers. Types of biomarkers that support decisions include: pharmacodynamic assessments for selecting the best compound or dosage; assessment of early tumor response with tissue biomarkers and imaging, mutation, and other assessment strategies for patient selection; and the use of markers of organ injury to detect toxicity and improve safety. Tactics used to generate biomarker data include fit-for-purpose assay validation and real-time biomarker assessments. Successfully translated and clinically informative biomarkers can mature into novel companion diagnostic tests that expand the practice of laboratory medicine. Systematic biomarker assessments are a key component of the clinical development of targeted therapies for cancer. The success of these biomarker assessments requires applying basic principles of laboratory medicine to generate the data required to make informed decisions. Successful biomarkers can transition into diagnostic tests that expand the laboratory medicine armamentarium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call