Abstract

Numerical evidence for the existence of spatially chaotic magnetic field lines about the collapse phase of tokamak sawteeth with incomplete reconnection is presented. This uses the results of extensive test particle simulations in different sets of electromagnetic perturbations tested against experimental JET measurements. In tokamak sawteeth, that form a laboratory prototype of magnetic reconnection, the relative magnetic perturbation may reach a few percents. This does not apply to tokamak operating regimes dominated by turbulence where is usually not larger than . However, this small magnetic perturbation being sustained by a large spectrum of modes is shown to be sufficient to ensure the existence of stochastic magnetic field lines. This has important consequences for magnetic confinement fusion where electrons are dominantly governed by the magnetic force. Indeed some overlap between magnetic resonances can locally induce chaotic magnetic field lines enabling the spatial redistribution of the electron population and of its thermal content. As they are the swiftest plasma particles, electrons feed back the most rapid perturbations of the magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.