Abstract

This study investigated the potential of four full-scale oxidation ditches to accomplish enhanced biological phosphorus removal (EBPR). Despite the fact that none of the tested oxidation ditches were designed to perform EBPR, mixed liquors from all four ditches showed good specific phosphorus release and uptake rates, a typical characteristic of a typical EBPR biomass. The specific phosphorus release rates ranged from 0.042- to 0.254-mg P/mg VSS-d and the specific phosphorus uptake rates ranged from 0.023- to 0.125-mg P/mg VSS-d for the tested full-scale plants. The EBPR potential of one of the full-scale plants (Central Davis Sewer District) was further studied by changing the aeration patterns in the ditch. The mixed liquor in this full-scale plant exhibited good phosphorus release and uptake trends and dissolved phosphorus, as low as 1.26 mg/L, could be accomplished in the final effluent of this plant as a result of this optimization. The long-term feasibility of the EBPR in this full-scale was tested by running a bench-scale EBPR reactor, in which the anaerobic phase was replaced with aerated-anaerobic phase to simulate the mixed liquor environment that exists in Central Davis mixed liquor and, in general, in all oxidation-ditch-type activated sludge configurations. The bench-scale reactor showed consistent EBPR activity in the absence of an anaerobic environment and more than 85% phosphorus removal could be maintained in the reactor for more than 400 days. The intrafloc microanaerobic/anoxic zones, which may be present in the mixed liquor, did not seem to add to the EBPR efficiency under aerated-anaerobic conditions. Cloning and sequencing using Rhodocyclus specific forward primer RHC439 showed the abundance of organisms most closely falling in Rhodocyclaceae family but not related to CandidatusAccumulibacter phosphatis. Simultaneous 4′-6–Diamidino-2–phenylindole (DAPI) staining and fluorescent in situ hybridization (FISH) using RHC439 probe clearly demonstrated the participation of polyphosphate accumulating organism (PAOs) targeted by RHC439 (i.e., in Rhodocyclaceae family). Microautoradiography assisted FISH using RHC439 further confirmed the participation of PAOs in Rhodocyclaceae family.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.