Abstract

The N-methyl- D-aspartate (NMDA) receptor, able to detect the coincidence of pre- and postsynaptic events, is considered to be the molecular analogue of associative learning. Associative learning is well known in leeches, particularly for reflexive shortening. The neuronal circuits underlying shortening have been documented and include neurons that release glutamate. Is this type of learning in leeches also mediated by NMDA receptors? The synapse between the P sensory neuron and the motoneuron-like AP cell was examined and: (1) NMDA failed to elicit a response in the AP cell, (2) the NMDA receptor antagonist 2-amino-5-phosphopentanoic acid affected synaptic transmission only at high, non-specific levels, and (3) the antagonist for the glycine-binding site 7-chloro-kynurenic acid at 20 microM did not inhibit transmission. Therefore, there are evidently no NMDA receptors at the P to AP synapse, suggesting other mechanisms of associative learning in leeches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.