Abstract

Novelty-gated encoding is the assumption that events are encoded more strongly into memory when they are more novel in comparison to previously encoded events. It is a core assumption of the SOB model of serial recall (Farrell & Lewandowsky, 2002). We present three experiments testing some predictions from novelty-gated encoding. Experiment 1 shows that the probability of recalling the third item in a list correctly does not depend on whether it is preceded by phonologically similar or dissimilar items. Experiment 2 shows that in lists of items from three classes (nonwords, spatial locations, and abstract drawings) the probability of recalling an item does not depend on whether it is preceded by items from the same or another class. Experiment 3 used a complex-span paradigm varying the phonological similarity of words that are read aloud as distractors in between memory items. Contrary to a prediction from novelty-gated encoding, similar distractors did not impair memory more than dissimilar distractors. The results question the assumption of novelty-gated encoding in serial recall. We discuss alternative explanations for the phenomena that this assumption has previously helped to explain. The present evidence against novelty-gated encoding might point to boundary conditions for the role of prediction error in the acquisition of memories.

Highlights

  • The serial-recall task is one of the main experimental work horses for studying short-term or working memory

  • We analyzed the proportion of correct responses with a Bayesian general linear model (GLM) with condition, serial position, and similarity (S vs. D) as well as all their interactions as predictors, using the BayesFactor package (Morey & Rouder, 2015) for R (R_Core_Team, 2020)

  • After each comparison we maintained the model with more support from the Bayes Factor (BF) as reference model for the comparison

Read more

Summary

Introduction

The serial-recall task is one of the main experimental work horses for studying short-term or working memory. It gives rise to a primacy gradient if we assume that at the beginning of encoding a list, there is no memory content related in any way to the list items, and that successive items on a list are typically at least somewhat similar to each other. Under these conditions, the first item is maximally novel and is encoded with maximal strength. This explains the negative effect of similarity on recall performance that has been observed for phonologically (Conrad & Hull, 1964) and visually similar lists (Logie, Della Sala, Wynn, & Baddeley, 2000)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call