Abstract
BackgroundDecision making is frequently associated with risk taking under uncertainty. Elevated intolerance of uncertainty is suggested to be a critical feature of obsessive-compulsive disorder (OCD). However, impairments of latent constructs of uncertainty processing and its neural correlates remain unclear in OCD. MethodsIn 83 participants (24 OCD patients treated with capsulotomy, 28 OCD control participants, and 31 healthy control participants), we performed magnetic resonance imaging using a card gambling task in which participants made decisions whether to bet or not that the next card would be larger than the current one. A hierarchical drift diffusion model was used to dissociate speed and amount of evidence accumulated before a decisional threshold (i.e., betting or no betting) was reached. ResultsHigh uncertainty was characterized by a smaller amount of evidence accumulation (lower thresholds), thus dissociating uncertainty from conflict tasks and highlighting the specificity of this task to test value-based uncertainty. OCD patients exhibited greater caution with poor performance and greater evidence accumulation overall along with slower speed of accumulation, particularly under low uncertainty. Bilateral dorsal anterior cingulate and anterior insula distinguished high- and low-uncertainty decision processes in healthy control participants but not in the OCD groups, indicating impairments in anticipation of differences in outcome variance and salience network activity. There were no behavioral or imaging differences relating to capsulotomy despite improvements in OCD symptoms. ConclusionsOur findings highlight greater impairments particularly in more certain trials in the OCD groups along with impaired neural differentiation of high and low uncertainty and suggest uncertainty processing as a trait cognitive endophenotype rather than a state-specific factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.