Abstract

The EVI1 (ecotropic virus integration-1) gene plays an important role in hematopoiesis especially in megakaryocyte development. The MDS1 gene is located upstream of EVI1, and its function is currently unknown. Normally the MDS1/EVI1 intergenic splice variant is co-expressed with EVI1. In adult acute myeloid leukemia (AML) overexpression of EVI1 (EVI1+) can be found in patients with chromosome 3q26-rearrangements. Often, these patients do not co-express MDS1/EVI1. Recently high EVI1 expression was also discovered in a separate subgroup of patients that did not have 3q26-rearrangements. Occasionally, they did not show overexpression of MDS1/EVI1. In these patients cryptic inversions of chromosome 3 were identified with fluorescence in situ hybridization (FISH). Of interest, EVI1+ was found to be an independent poor prognostic marker in adult AML (Lugthart et al, Blood 2008). In pediatric AML, 3q26-rearrangements are rare and the role of EVI1 is unknown. In this study, we investigated the frequency and clinical relevance of EVI1+ in pediatric AML. EVI1 expression was analyzed in 233 pediatric AML patients, of whom microarray gene expression profiling data were available. EVI1+ was found in 25 pediatric AML patients (11%), and confirmed with real-time quantitative PCR. This included 13/49 (26%) patients with MLL-rearranged AML: 5/22 (23%) cases with t(9;11); and all (n=4) cases with t(6;11). Moreover, EVI1+ was found in 4/7 (57%) cases with AML M7; in 2/3 (66%) cases with AML M6; in both cases with monosomy 7; in 1/43 (2%) cases with normal cytogenetics; in 2 patients with random cytogenetics, and in 1 patient with a cytogenetic failure. EVI1+ was not found in the t(8;21), inv(16) and t(15;17) subgroups. 3/25 EVI1+ patients lacked the MDS/EVI1 transcript, but no cryptic 3q26-rearrangements were detected with FISH. Molecular analysis showed that one patient had a CEBPα mutation; one patient had an FLT3-ITD; and 3 patients showed a mutation in the RAS oncogene. EVI+ was not correlated with sex or white blood cell count. However, the frequency in children younger than 10 years old was twice as high when compared to older children (14% vs 7%, p=0.12). Survival analysis was restricted to the subset of patients who were treated using uniform DCOG and BFM treatment protocols (n=204). In this cohort, EVI1+ patients had a worse 5-years event-free survival (pEFS) compared to patients without EVI1+ (30 vs. 43%, p=0.02). However, multivariate analysis, including cytogenetics (favorable [t(8;21, inv(16), t(15;17)] vs. other), FLT3-ITD, age and WBC, showed that EVI1+ was not an independent prognostic factor for survival. Moreover, within the unfavorable/normal cytogenetic subgroup, there was no difference in outcome between patients with and without EVI1+. We conclude that EVI1+ is found in ~10% of pediatric AML, and highly correlated with specific unfavorable cytogenetic (MLL-rearrangements) and morphologic (FAB M6/7) subtypes. In contrast to adult AML, no 3q26-rearrangements or cryptic inversions were found, and EVI1+ was not an independent prognostic factor. This difference in prognostic relevance may be due to differences in treatment. Alternatively, these results may indicate that EVI1 plays a different role in disease biology between adult and pediatric AML. This is at least suggested by the lack of 3q26 aberrations in pediatric AML.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call