Abstract

Graph eigenvalues are examples of totally real algebraic integers, i.e. roots of real-rooted monic polynomials with integer coefficients. Conversely, the fact that every totally real algebraic integer occurs as an eigenvalue of some finite graph is a deep and remarkable result, conjectured forty years ago by Hoffman, and proved seventeen years later by Estes. This short paper provides an independent and elementary proof of a stronger statement, namely that the graph may actually be chosen to be a tree. As a by-product, our result implies that the atoms of the limiting spectrum of n×n symmetric matrices with independent Bernoulli (cn) entries are exactly the totally real algebraic integers. This settles an open problem raised by Ben Arous (2010).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.