Abstract
The scientific basis and advantages of using recently developed CRISPR/Cas-9 technology for transgenesis have been assessed with respect to other production methods, laboratory animal welfare, and the scientific relevance of transgenic models of human diseases in general. As the new technology is straightforward, causes targeted DNA double strand breaks and can result in homozygous changes in a single step, it is more accurate and more efficient than other production methods and speeds up transgenesis. CRISPR/Cas-9 also obviates the use of embryonic stem cells, and is being used to generate transgenic non-human primates (NHPs). While the use of this method reduces the level of animal wastage resulting from the production of each new strain, any long-term contribution to reduction will be offset by the overall increase in the numbers of transgenic animals likely to result from its widespread usage. Likewise, the contribution to refinement of using a more-precise technique, thereby minimising the occurrence of unwanted genetic effects, will be countered by a probable substantial increase in the production of transgenic strains of increasingly sentient species. For ethical and welfare reasons, we believe that the generation of transgenic NHPs should be allowed only in extremely exceptional circumstances. In addition, we present information, which, on both welfare and scientific grounds, leads us to question the current policy of generating ever-more new transgenic models in light of the general failure of many of them, after over two decades of ubiquitous use, to result in significant advances in the understanding and treatment of many key human diseases. Because this unsatisfactory situation is likely to be due to inherent, as well as possibly avoidable, limitations in the transgenic approach to studying disease, which are briefly reviewed, it is concluded that a thorough reappraisal of the rationale for using genetically-altered animals in fundamental research and by the pharmaceutical industry, and for its support by funding bodies, should be undertaken. In the meantime, the use of CRISPR/Cas-9 to generate new transgenic cells in culture is to be guardedly encouraged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.