Abstract
In this paper a unified framework for dealing with a broad family of propositional multimodal logics is developed. The key tools for presentation of the logics are the notions of closure relation operation and monotonous relation operation. The two classes of logics: FiRe-logics (finitely reducible logics) and LaFiRe-logics (FiRe-logics with local agreement of accessibility relations) are introduced within the proposed framework. Further classes of logics can be handled indirectly by means of suitable translations. It is shown that the logics from these classes have the finite model property with respect to the class of ♦-formulae, i.e. each ♦-formula has a ℒ-model iff it has a finite ℒ-model. Roughly speaking, a ♦-formula is logically equivalent to a formula in negative normal form without occurrences of modal operators with necessity force. In the proof we introduce a substantial modification of Claudio Cerrato's filtration technique that has been originally designed for graded modal logics. The main core of the proof consists in building adequate restrictions of models while preserving the semantics of the operators used to build terms indexing the modal operators.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.