Abstract

A Kummer surface is the minimal desingularization of the surface T/i, where T is a complex torus of dimension 2 and i the involution automorphism on T. T is an abelian surface if and only if its associated Kummer surface is algebraic. Kummer surfaces are among classical examples of K3-surfaces (which are simply-connected smooth surfaces with a nowhere-vanishing holomorphic 2-form), and play a crucial role in the theory of K3-surfaces. In a sense, all Kummer surfaces (resp. algebraic Kummer surfaces) form a 4 (resp. 3)-dimensional subset in the 20 (resp. 19)-dimensional family of K3-surfaces (resp. algebraic K3 surfaces).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.