Abstract

BackgroundAdvances in sequencing and analysis tools have facilitated discovery of many new viruses from invertebrates, including ants. Solenopsis invicta is an invasive ant that has quickly spread worldwide causing significant ecological and economic impacts. Its virome has begun to be characterized pertaining to potential use of viruses as natural enemies. Although the S. invicta virome is the best characterized among ants, most studies have been performed in its native range, with less information from invaded areas.MethodsUsing a metatranscriptome approach, we further identified and molecularly characterized virus sequences associated with S. invicta, in two introduced areas, U.S and Taiwan. The data set used here was obtained from different stages (larvae, pupa, and adults) of S. invicta life cycle. Publicly available RNA sequences from GenBank’s Sequence Read Archive were downloaded and de novo assembled using CLC Genomics Workbench 20.0.1. Contigs were compared against the non-redundant protein sequences and those showing similarity to viral sequences were further analyzed.ResultsWe characterized five putative new viruses associated with S. invicta transcriptomes. Sequence comparisons revealed extensive divergence across ORFs and genomic regions with most of them sharing less than 40% amino acid identity with those closest homologous sequences previously characterized. The first negative-sense single-stranded RNA virus genomic sequences included in the orders Bunyavirales and Mononegavirales are reported. In addition, two positive single-strand virus genome sequences and one single strand DNA virus genome sequence were also identified. While the presence of a putative tenuivirus associated with S. invicta was previously suggested to be a contamination, here we characterized and present strong evidence that Solenopsis invicta virus 14 (SINV-14) is a tenui-like virus that has a long-term association with the ant. Furthermore, based on virus sequence abundance compared to housekeeping genes, phylogenetic relationships, and completeness of viral coding sequences, our results suggest that four of five virus sequences reported, those being SINV-14, SINV-15, SINV-16 and SINV-17, may be associated to viruses actively replicating in the ant S. invicta.ConclusionsThe present study expands our knowledge about viral diversity associated with S. invicta in introduced areas with potential to be used as biological control agents, which will require further biological characterization.

Highlights

  • Advances in sequencing and analysis tools have facilitated discovery of many new viruses from invertebrates, including ants

  • New virus sequences found associated with S. invicta transcriptome Virus sequences were found associated with S. invicta transcriptomes collected from three geographic locations in the U.S and one location from Taiwan, representing different stages of the S. invicta life cycle (Table 1)

  • De novo assembling of non-host reads (Additional file 1: Table S1) from libraries followed by BLAST analyses revealed the presence of complete or near-complete genomes sequences of 4 putative new single-strand RNA viruses, tentatively named S. invicta virus (SINV-14), Solenopsis invicta virus 15 (SINV-15), SINV-16 and Solenopsis invicta virus 17 (SINV-17), and one partial genome sequence encompassing the almost full-length coding sequence of a putative single-strand DNA (ssDNA) virus, named S. invicta-associated densovirus (SINaDNV; Fig. 1)

Read more

Summary

Introduction

Advances in sequencing and analysis tools have facilitated discovery of many new viruses from invertebrates, including ants. Solenopsis invicta is an invasive ant that has quickly spread worldwide causing significant ecological and economic impacts. The red imported fire ant, Solenopsis invicta, is an invasive pest causing significant ecological impact and economic loss in invaded areas [15, 16]. Originating from South America, S. invicta was accidentally introduced into the southern region of the United States (U.S.) almost a century ago, becoming a serious problem [17] Since it has spread throughout the southeastern U.S and more recently into Oklahoma, New Mexico, Arizona, and California [18]. Generalist feeding habits and high populations densities make S. invicta a successful invasive species causing huge disturbance in biodiversity by displacing native ants and other arthropods in introduced regions [15]. Establishment of management strategies that are both environmentally friendly and self-sustainable are necessary

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call