Abstract
The event-triggered synchronization control problem is concerned for a class of complex networks with nonlinearly coupling function and adaptive coupling strength. Given a state-based event-trigger mechanism and the threshold, an event-triggered control method is introduced to make complex networks achieve exponential synchronization. By combining the Lyapunov stability theory and the knowledge of graph theory, a sufficient condition is established such that complex networks can achieve exponential synchronization. Then, the feasibility of the event-triggered control is analyzed. Moreover, the second-order Kuramoto oscillators is taken into account. And the event-triggered control strategy is used to make the oscillators achieve exponential synchronization. Meanwhile, two simulation results about the second-order Kuramoto oscillators are given to show the effectiveness of results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.