Abstract
The event-triggered control is of compelling features in efficiently exploiting system resources, and thus has found many applications in sensor networks, networked control systems, multi-agent systems and so on. In this paper, we study the event-triggered model predictive control (MPC) problem for continuous-time nonlinear systems subject to bounded disturbances. An event-triggered mechanism is first designed by measuring the error between the system state and its optimal prediction; the event-triggered MPC algorithm that is built upon the triggering mechanism and the dual-mode approach is then designed. The rigorous analysis of the feasibility and stability is conducted, and the sufficient conditions for ensuring the feasibility and stability are developed. We show that the feasibility of the event-triggered MPC algorithm can be guaranteed if, the prediction horizon is designed properly and the disturbances are small enough. Furthermore, it is shown that the stability is related to the prediction horizon, the disturbance bound and the triggering level, and that the state trajectory converges to a robust invariant set under the proposed conditions. Finally, a case study is provided to verify the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.