Abstract

SummaryThis paper addresses the problem of probabilistic robust stabilization for uncertain systems subject to input saturation. A new probabilistic solution framework for robust control analysis and synthesis problems is addressed by a scenario optimization approach, in which the uncertainties are not assumed to be norm bounded. Furthermore, by expressing the saturated linear feedback law on a convex hull of a group of auxiliary linear feedback laws, we establish conditions under which the closed‐loop system is probabilistic stable. Based on these conditions, the problem of designing the state feedback gains for achieving the largest size of the domain of attraction is formulated and solved as a constrained optimization problem with linear matrix inequality constraints. The results are then illustrated by a numerical example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.