Abstract

In order to increase the real-time performance of lateral trajectory tracking of unmanned vehicles, this paper designs an event-triggered nonlinear model predictive controller, which can save computation resource to a large extent while the tracking accuracy is still guaranteed. Firstly, a simplified vehicle is established using a two-degree-of-freedom dynamics model. Then, according to the theory of model predictive control, a nonlinear model predictive controller (NMPC) is designed. Since traditional NMPCs often have poor real-time control performance, this paper introduces an event-triggered mechanism, which allows the remaining elements of the control variables in the control horizon to be applied to the system once a specific condition is satisfied. Finally, the proposed controller is established by Matlab/Simulink, and the different trigger conditions are compared and verified in a double lane change maneuvers Then a system for evaluation is designed to quantify the performance of the controller in different trigger conditions. For further verification of the proposed controller, a Hard-in-the-loop simulation system based on Xpack package is established to conduct an HIL experiment. The results show that compared with traditional nonlinear model predictive control, our method offers greatly improved real-time performance while the tracking accuracy is guaranteed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.