Abstract

The event-triggered state estimation problem for linear time-invariant systems is considered in the framework of Maximum Likelihood (ML) estimation in this paper. We show that the optimal estimate is parameterized by a special time-varying Riccati equation, and the computational complexity increases exponentially with respect to the time horizon. For ease in implementation, a one-step event-based ML estimation problem is further formulated and solved, and the solution behaves like a Kalman filter with intermittent observations. For the one-step problem, the calculation of upper and lower bounds of the communication rates from the process side is also briefly analyzed. An application example to sensorless event-based estimation of a DC motor system is presented and the benefits of the obtained one-step event-based estimator are demonstrated by comparative simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.