Abstract

This paper presents the design of integral sliding mode controller for an Euler–Lagrange system in event-triggered framework considering the actuator saturation. The event-triggered control strategy is used with an aim that the communication load will be reduced over the feedback link in networked control system by adapting a need-based information exchange policy. The integral sliding surface is designed with saturation function, whose finite time reachability is established with anti-saturated sliding mode controller. The closed loop system stability has been ensured by showing the convergence of state trajectories within any desired bound neighbourhood of the origin. The event-triggered sliding mode control is shown to be free from accumulation of events, i.e. Zeno free behaviour has been guaranteed. Finally, with these theoretical formulations, the numerical simulations have been shown to prove the effectiveness of the proposed control strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.