Abstract

This paper investigates the event-triggered containment control for a class of second-order nonlinear multi-agent systems. A centralized event-triggered protocol is first designed, then the result is extended to the decentralized counterpart. By the tools from nonsmooth analysis, it is shown that the containment control objective can be achieved via the presented protocols. To avoid the Zeno behavior, the event-triggered conditions are redesigned. It is proven that all followers can asymptotically converge to the convex hull spanned by multiple leaders via the proposed strategies and the Zeno behavior can be excluded, simultaneously. Two examples are given to illustrate the feasibility of the proposed protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call