Abstract
An event-triggered adaptive dynamic programming (ADP) approach is proposed for a class of non-affine continuous-time nonlinear systems with unknown internal states. A neural networks (NNs)-based observer is designed to reconstruct internal states of the system using output information, and then, by the estimation signals, an output feedback ADP control approach is developed in an event-triggered manner. The proposed approach samples the states and updates the control signal only when the triggered condition is violated, and critic NNs are designed to approximate the performance index. Compared with the traditional ADP one under a fixed sampling mechanism, the event-triggered control approach reduces the computation resource and transmission load in the learning process. The stability analysis of the closed-loop system is provided based on the Lyapunov’s theorem. Two simulation results also verify the theoretical claims.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.