Abstract

In this paper, a novel event-triggered adaptive fault-tolerant control scheme is proposed for a class of nonlinear systems with unknown actuator faults. Multiplicative faults and additive faults are taken into account simultaneously, both of which may vary with time. Different from existing results, our controller fuses static reliability information and dynamic online information, which is helpful to enhance the fault-tolerant capability. With the aid of an event-triggering mechanism, an actuator switching strategy and a bound estimation approach, the communication burden is significantly reduced and the impacts of the actuator faults as well as the network-induced error are effectively compensated for. Moreover, by employing the prescribed performance control technique, the system tracking error can converge to a predefined arbitrarily small residual set with prescribed convergence rate and maximum overshoot, which implies that the proposed scheme is able to ensure rapid and accurate tracking. Simulation results are presented to illustrate the effectiveness of the proposed scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call