Abstract

We have examined the organization of integrated SV40 sequences in an uncloned population of a transformed human fibroblast cell line. Somatic cell hybrids between mouse B82 cells and human GM847 cells were examined for SV40 T-antigen expression and individual human chromosome presence. This analysis revealed that a functional SV40 genome is located on human chromosome 7. Restriction endonuclease digestion followed by blot hybridization of the parental human cell line revealed that it contains multiple normal and defective SV40 copies integrated into the host genome in tandem. A similar analysis of several T-ag+ hybrid cell lines indicated that the integrated viral sequences in different hybrid cell lines (thus in different cells of the original population) are very closely related but not always identical. Analysis of subclones of GM847 also revealed such differences. Based upon these results, we postulate that following the initial integration event, viral as well as the flanking host DNA sequences become unstable and are subject to deletions and rearrangements. This short-lived structural instability is followed by highly stable integration of SV40 which is maintained in these cells or their hybrid derivatives for at least hundreds of cell generations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call