Abstract

Previously we derived a new measure relating the driver's steering wheel responses to the vehicle's heading error velocity. This measure, the relative steering wheel compensation (RSWC), changes at times coincident with an alerting stimulus, possibly representing shifts in control strategy as measured by a change in the gain between visual input and motor output. In the present study, we sought to further validate this novel measure by determining the relationship between the RSWC and electroencephalogram (EEG) activity in brain regions associated with sensorimotor transformation processes. These areas have been shown to exhibit event-related spectral perturbation (ERSP) in the alpha frequency band that occurs with the onset of corrective steering wheel maneuvers in response to vehicle perturbations. We hypothesized that these regions would show differential alpha activity depending on whether the RSWC was high or low, reflecting changes in gain between visual input and motor output. Interestingly, we find that low RSWC is associated with significantly less peak desynchronization than larger RSWC. In addition we demonstrate that these differences are not attributable to the amount the steering wheel is turned nor the heading error velocity independently. Collectively these results suggest that neural activity in these sensorimotor regions scales with alertness and may represent differential utilization of multisensory information to control the steering wheel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call