Abstract

Event cameras asynchronously output the polarity values of pixel-level log intensity alterations. They are robust against motion blur and can be adopted in challenging light conditions. Owing to these advantages, event cameras have been employed in various vision tasks such as depth estimation, visual odometry, and object detection. In particular, event cameras are effective in stereo depth estimation to find correspondence points between two cameras under challenging illumination conditions and/or fast motion. However, because event cameras provide spatially sparse event stream data, it is difficult to obtain a dense disparity map. Although it is possible to estimate disparity from event data at the edge of a structure where intensity changes are likely to occur, estimating the disparity in a region where event occurs rarely is challenging. In this study, we propose a deep network that combines the features of an image with the features of an event to generate a dense disparity map. The proposed network uses images to obtain spatially dense features that are lacking in events. In addition, we propose a spatial multi-scale correlation between two fused feature maps for an accurate disparity map. To validate our method, we conducted experiments using synthetic and real-world datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.