Abstract

In this note, the problem of event-based state estimation for a finite-state hidden Markov model under a generic stochastic event-triggering condition and an unreliable communication channel is investigated. The effect of packet dropout is characterized with a Gilbert–Elliott process. Utilizing the change of probability measure approach, the packet dropout model and the event-triggered measurement information available to the estimator, analytical expressions for the conditional probability distributions of the states are obtained, based on which the optimal event-based state estimates can be further calculated, together with a closed-form expression of the average sensor-to-estimator communication rate. The effectiveness of the proposed results is illustrated by an application to a wireless automated machine health monitoring problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.