Abstract
As a bio-inspired and emerging sensor, an event-based neuromorphic vision sensor has a different working principle compared to the standard frame-based cameras, which leads to promising properties of low energy consumption, low latency, high dynamic range (HDR), and high temporal resolution. It poses a paradigm shift to sense and perceive the environment by capturing local pixel-level light intensity changes and producing asynchronous event streams. Advanced technologies for the visual sensing system of autonomous vehicles from standard computer vision to event-based neuromorphic vision have been developed. In this tutorial-like article, a comprehensive review of the emerging technology is given. First, the course of the development of the neuromorphic vision sensor that is derived from the understanding of biological retina is introduced. The signal processing techniques for event noise processing and event data representation are then discussed. Next, the signal processing algorithms and applications for event-based neuromorphic vision in autonomous driving and various assistance systems are reviewed. Finally, challenges and future research directions are pointed out. It is expected that this article will serve as a starting point for new researchers and engineers in the autonomous driving field and provide a bird's-eye view to both neuromorphic vision and autonomous driving research communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.