Abstract

In this article, the dissipativity-based filtering of the Markovian jump neural networks subject to incomplete measurements and deception attacks is investigated by adopting an event-triggered communication strategy, where the attackers are supposed to occur in a random fashion but obey the Bernoulli distribution. Consider that the information of the system mode is transmitted to the filter over the communication network that is vulnerable to external attacks, which may lead to the undesired performance of the resulting system by injecting malicious information from the attackers. As a result, the filter has difficulty completing information from the original system. Besides, an event-triggered communication mechanism is introduced to reduce the communication frequency between data transmission due to the limited network resources, and different triggering conditions corresponding to different jump modes are developed. Then, based on the above considerations, the sufficient condition is derived to ensure the stochastic stability and dissipativity of the resulting augmented system although the deception attacks and incomplete information exist. A numerical simulated example is provided to verify the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call