Abstract

Nowadays, distributed optimization algorithms are widely used in various complex networks. In order to expand the theory of distributed optimization algorithms in the direction of directed graph, the distributed convex optimization problem with time-varying delays and switching topologies in the case of directed graph topology is studied. The event-triggered communication mechanism is adopted, that is, the communication between agents is determined by the trigger conditions, and the information exchange is carried out only when the conditions are met. Compared with continuous communication, this greatly saves network resources and reduces communication cost. Using Lyapunov-Krasovskii function method and inequality analysis, a new sufficient condition is proposed to ensure that the agent state finally reaches the optimal state. The upper bound of the maximum allowable delay is given. In addition, Zeno behavior will be proved not to exist during the operation of the algorithm. Finally, a simulation example is given to illustrate the correctness of the results in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.