Abstract

In this article, an event-triggered robust fuzzy adaptive prescribed performance finite-time control strategy is presented for a class of strict-feedback nonlinear systems with external disturbances. The relative-threshold-based event-triggered signal is introduced to reduce communication burden, and the dynamic surface control technique is applied to address the computational complexity problem. A disturbance observer is designed to estimate the compounded disturbances, which are composed of external disturbances and fuzzy approximation errors. The proposed control strategy can guarantee that the closed-loop system is semiglobally practically finite-time stable, and the tracking error converges to a small residual set by incorporating the prescribed performance bound in finite-time. Finally, simulation results are provided to verify the effectiveness of the proposed robust fuzzy control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call