Abstract

In this article, an event-triggered output-feedback adaptive optimal control approach is proposed for large-scale systems with parametric and dynamic uncertainties through robust adaptive dynamic programming and small-gain techniques. By using the input and output data, the unmeasurable states are reconstructed instead of designing a Luenberger observer. To save the communication resources and reduce the number of control updates, an event-based feedback control policy is learned based on policy iteration and value iteration, respectively. The closed-loop stability and the convergence of the proposed algorithms are analyzed by using Lyapunov stability theory and small-gain techniques. A practical example of multimachine power systems with governor controllers is given to demonstrate the effectiveness of the proposed methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call