Abstract

This paper studies sampled-data implementation of event-triggered PI control for time-delay systems with parametric uncertainties. The systems are given by continuous-time linear systems with parameter uncertainty polytopes. We propose an event-triggered PI controller, in which the controller transmits its signal to the actuator when its relative value goes beyond a threshold. A state-space formulation of the Smith predictor is used to compensate the time-delay. An asymptotic stability condition is derived in the form of LMIs using a Lyapunov-Krasovskii functional. Numerical examples illustrate that our proposed controller reduces the communication load without performance degradation and despite plant uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.