Abstract

This article investigates the problem of event-triggered model-free adaptive iterative learning control (MFAILC) for a class of nonlinear systems over fading channels. The fading phenomenon existing in output channels is modeled as an independent Gaussian distribution with mathematical expectation and variance. An event-triggered condition along both iteration domain and time domain is constructed in order to save the communication resources in the iteration. The considered nonlinear system is converted into an equivalent linearization model and then the event-triggered MFAILC independent of the system model is constructed with the faded outputs. Rigorous analysis and convergence proof are developed to verify the ultimately boundedness of the tracking error by using the Lyapunov function. Finally, the effectiveness of the presented algorithm is demonstrated with a numerical example and a velocity tracking control example of wheeled mobile robots (WMRs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.