Abstract

This article studies the problem of H∞ controller design for discrete-time T-S fuzzy systems under an event-triggered (ET) communication mechanism. By proposing a new asynchronous premise reconstruction approach, new types of ET fuzzy controllers are designed to overcome the challenges caused by the mismatch of premise variables, in which the gains of the designed controllers are automatically updated at different triggering instants according to an online algorithm. By constructing discontinuous Lyapunov functions, it is proved that the proposed ET controllers guarantee the stability and H∞ performance of the closed-loop systems. Two examples are provided to verify the validity of the proposed design method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.