Abstract

This paper provides a novel event-triggered fault detection (FD) scheme for discrete-time linear systems. First, an event-triggered interval observer is proposed to generate the upper and lower residuals by taking into account the influence of the disturbances and the event error. Second, the robustness of the residual interval against the disturbances and the fault sensitivity are improved by introducing l1 and H∞ performances. Third, dilated linear matrix inequalities are used to decouple the Lyapunov matrices from the system matrices. The nonnegative conditions for the estimation error variables are presented with the aid of the slack matrix variables. This technique allows considering a more general Lyapunov function. Furthermore, the FD decision scheme is proposed by monitoring whether the zero value belongs to the residual interval. It is shown that the information communication burden is reduced by designing the event-triggering mechanism, while the FD performance can still be guaranteed. Finally, simulation results demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.