Abstract

This paper studies the problem of event-triggered fault detection filter (FDF) and controller coordinated design for a continuous-time networked control system (NCS) with biased sensor faults. By considering sensor-to-FDF network-induced delays and packet dropouts, which do not impose a constraint on the event-triggering mechanism, and proposing the simultaneous network bandwidth utilization ratio and fault occurrence probability-based event-triggering mechanism, a new closed-loop model for the considered NCS is established. Based on the established model, the event-triggered H ∞ performance analysis, and FDF and controller coordinated design are presented. The combined mutually exclusive distribution and Wirtinger-based integral inequality approach is proposed for the first time to deal with integral inequalities for products of vectors. This approach is proved to be less conservative than the existing Wirtinger-based integral inequality approach. The designed FDF and controller can guarantee the sensitivity of the residual signal to faults and the robustness of the NCS to external disturbances. The simulation results verify the effectiveness of the proposed event-triggering mechanism, and the FDF and controller coordinated design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.