Abstract

In this study, we investigate event-triggered distributed fusion estimation for asynchronous Markov jump systems subject to correlated noises and fading measurements. The measurement noises are interrelated, and they are simultaneously coupled with the system noise. The sensor samples measurements uniformly, and the sampling rates of the sensors are different. First, the asynchronous system is synchronized at state update points; then, the local filter is obtained. Furthermore, a variance-based event-triggered strategy is introduced between the local estimator and the fusion center to decrease the energy consumption of network communication. Then, a distributed fusion estimation algorithm is proposed using a matrix-weighted fusion criterion. Finally, the effectiveness of the algorithm is verified using computer simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.