Abstract

In this study, the event-triggered distributed fault detection problem is investigated for a class of discrete-time uncertain systems in the finite frequency domain. A sensor network is utilised to collect the information of interest, and an event-triggered communication scheme is adopted to alleviate the communication burden. For the addressed problem, a distributed fault detection filter is designed based on the measurement information from its neighbouring nodes and itself by the given topology. In addition, a fashionable index, named as H - /H ∞ performance, is employed in order to simultaneously achieve the residual sensitivity to faults and the robustness against disturbances. By resorting to Euler's formula combined with Lyapunov stability theory, some sufficient conditions are established to satisfy the desired performance over a given finite-frequency domain, and the distributed fault detection filter gains are explicitly characterised by solving a series of linear matrix inequalities. A simulation example is conducted to illustrate the feasibility of the proposed filter design technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call