Abstract

This paper investigates the event-based consensus problems for linear multi-agent systems under directed network topology. First, a new event-triggered control method is proposed for the leader-following consensus problem of agents under directed graphs. Then this new method is applied to the cluster control problem under special topological conditions. The new event-based control scheme is better than some existing literature in the following aspects. 1) The graph only needs to contain a spanning tree instead of being required to be strongly connected graph or undirected, and the triggering function is state-dependent rather than time-dependent. 2) Some parameters are designable for the trade-off between the event interval and the performance of the controlled system. Besides, the optimization of some parameters is studied to reduce the trigger frequency. All the agents can achieve consensus with an exponential speed when communications among follower agents are intermittent, and Zeno behavior is excluded under the proposed method. 3) When applying this method to the cluster control problem, agents in the same cluster share the same form of triggering function. Cluster consensus can be achieved regardless of intra- and inter-cluster relative coupling strength under the event-triggered control framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call