Abstract

An adaptive neural network (NN) event-triggered control scheme is proposed for nonlinear nonstrict-feedback multiagent systems (MASs) against input saturation, unknown disturbance, and sensor faults. Mean-value theorem and Nussbaum-type function are invoked to transform the structure of the input saturation and overcome the difficulty of unknown control directions, respectively. On the basis of the universal approximation property of NNs, a nonlinear disturbance observer is designed to estimate the unknown compounded disturbance composed of external disturbance and the residual term of input saturation. According to the measurement error defined by control signal, an event-triggered mechanism is developed to save network transmission resource and reduce the number of controller update. Then, an adaptive NN compensation control approach is proposed to tackle the problem of sensor faults via the dynamic surface control (DSC) technique. It is proved that all signals in the closed-loop system are semi-globally uniformly ultimately bounded. Finally, simulation results demonstrate the effectiveness of the presented control strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.