Abstract

This paper presents an innovative event-triggered control scheme for addressing the stabilization problem of polynomial fuzzy systems under the influence of Denial-of-Service (DoS) attacks. The proposed controller utilizes a sampling-based event-triggered mechanism to reduce communication resources and avoid Zeno behavior. Furthermore, a novel polynomial fuzzy model-based control system is developed to investigate the impact of periodic DoS attacks and the addressed event-triggered mechanism on system stability. To improve system performance, control gains are updated at each triggering instant. The exponential stability criteria are formulated in the form of sum-of-square constraints, supported by a triggering instant dependent piecewise Lyapunov-Krasovskii functional and an online asynchronous premise reconstruction approach. Finally, the efficiency and usefulness of the theoretical findings are validated through simulation examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.