Abstract

The cablelessness of non-contact close-proximity formation satellites can fundamentally avoid the influence of non-contact interface coupling effects and can further enhance the attitude pointing accuracy and stability of the payload module (PM). However, it also brings the problem of limited on-board resources and system latency. In this paper, an event-triggered attitude tracking controller of the support module (SM) that avoids the Zeno phenomenon was proposed. The update time of the control signal was determined by the event-triggering mechanism based on intermediate variables, thus, reducing the communication burden and actuator asynchrony between the two modules. The feasibility and effectiveness of the proposed approach was demonstrated by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.