Abstract
AbstractUnder the framework of event‐triggered transmission mechanism, the problem of attack detection and state estimation of multi‐sensor linear time‐invariant systems under static attacks is considered. First, for each transmission channel, the sensor collects measurement information according to an event‐triggered mechanism to reduce unnecessary energy consumption. Then, inspired by the clustering algorithm in machine learning, a detection mechanism based on Gaussian mixture model, which can set a confidence level for the measurement of each sensor is proposed. Finally, centralised data fusion is performed according to the results of attack detection and event‐triggered judgement to realise remote state estimation. A numerical example proves that the proposed algorithm can locate the damaged sensor, save the network transmission bandwidth under the premise of ensuring accuracy and efficiency of sensor estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IET Cyber-Physical Systems: Theory & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.