Abstract

This paper studies the event-triggered adaptive tracking control problem of a class of pure-feedback systems. Via the backstepping method and the neural network approximation with the central symmetric distribution, an event-triggered adaptive neural network controller is designed. In particular, a dynamic gain driven by the tracking error is introduced into the event-triggering mechanism. Then, by using the Lyapunov stability theory, the boundedness of all the closed-loop signals is proved, and the tracking error falls into a prespecified ϵ-neighbourhood of zero. Meanwhile, the Zeno behaviour is avoided. Finally, two simulations verify the effectiveness of the proposed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.